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Stabilization of Driving Velocity Constraints for Self-balanced Robot
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Abstraci— Non-holonomic constraints impose restrictions on
the allowable velocities or motions of the system. These con-
straints may arise from physical internctions or mechanical
limitations. Stabilizing constraints in a non-holonomic multi-
body system often involves employing numerical methods due
to the complexity of the constrainis and the dynamic nature
of the system. Moreover, for sell-balancing robots, driving
constraints may be introduced to the system in the velocity
level, and proper management of these consirainis is crucial
in the design and analysis of mechanisms, vehicles, robotics,
and other complex systems. In this paper, we present an
approach for stabilizing the driving velocity constraints, along
with other holonomic and non-holonomic constraints, of a sell-
balanced robot. The proposed approach is intended for use in
the numerical integration process of the Differential Algebraic
Equations of multibody system dynamics, and not for real-time
control. Successful numerical integration enables the calculation
of driving forces in an open-loop manner. The paper proves
that Tuzzy logic control can be utilized efMectively for driving
constraints stabilization at the velocity level.

[. INTRODUCTION

Unlike holonomic systems, where constraints can be
fully described by equations involving positions, velocities,
and accelerations, non-holonomic constraints are typically
inequalities involving velocities and cannot be integrated
directly to yield position constraints, These constraints often
arise due to the nature of the robot's mechanical design,
such as wheeled robots or vehicles [1]. [2]. Stabilizing
constraints in a non-holonomic multibody system is more
challenging than in holonomic systems. This is because
non-holonomic constraints limit the possible motions of the
system without completely defining them. [3]. numerical
methods that commonly used for constraint stabilization in
non-holonomic multibody systems include [4):

« Holonomic  Approximation:  Approximate  non-
holonomic constraints  with  holonomic  constraints
that can be integrated more easily. This allows 1o
treat the system as a holonomic multibody system,
simplifying the constraint stabilization problem.

e Projection Methods: This method involves integrating
the system’s equations of motion subject to the con-
straints using explicit numerical integrators, followed
by a projection step to enforce the constraints onto

*This work was not supported by any organization

'Benhn  Faculty of  Engincering, Benha  University, 13512
Benhn, Egypt. ibrahim.abdulhadi@bhit.bu.edu.eqg ,
mona.alawa@bhilt.bu.edu.eg

* Egypt University of Informatics (EUL)., New Administrative Capital,
Cairo, Egypl. nader .manaourfeul.edu.eg

‘Depariment of Robotics and  Mechatronics, Egypl-Jupan  Univer-
sity ol Science and Technology E-JUST, Alexandria 21934, Egypl
ayman.nadafejust.edu.eq

the constraint manifold at each time step. Projection
methods ensure that the system remains close to the
constraint manifold throughout the simulation.

» Penalty Methods: Penalize violations of the constraints
in the system's objective function during numerical
optimization or simulation. The penalty terms increase
as the constraints are violated, effectively pushing the
system towards satisfying the constraints.

A self-balancing robot can indeed be modeled as a non-
holonomic multibody system due to the constraints it faces.
In this context, the non-holonomic constraints typically arise
from the fact that the robot’s motion is restricted by its
wheels' kinematics and the need to maintain balance.
Self-balancing robots are versatile due to their dynamic
stabilization capabilities, adaptability, and compact design,
Their applications include personal transportation, assistive
devices, warchouse management, surveillance, telepresence,
and entertainment (5], [6].

II. MuLTIBODY MODEL OF SELF-BALANCED ROBOT
A Svsrem Descriprion

The Self-Balanced robot structure, is shown in Fig.(2),

which is consists of the following components:

» Pendulum: This is the vertical component, upwards
from the base where the wheels are attached. It acts as
an inverted pendulum, which is a common setup for self-
balancing robots, The pendulum’s position is typically
monitored by sensors to help the robot maintain its
balance.

o Wheels: There are two wheels labeled 'left’ and "right’.
These wheels are critical for the robot’s movement and
balance, and are most likely powered by motors. Each
motor can be controlled independently, allowing the
robot to manoeuvre and remain upright.

The generalized coordinates vector of the system can be writ-
ten as q' = [q” ¢ q" T. where, q'= [R'r H'TJr =
(Rl Rl RU @' @ y']'is the generalized coordinates
of the body i,i = 1,2,3, There are three coordinate sys-
tems depicted, the global coordinate system, (X", ¥",2%),
represents a fixed reference frame, likely the ground in
which the robot operates. The coordinate system labeled
with superseript 1 (x',y',2') is fixed to the body of the
robot (pendulum), this frame moves with the robot, The
wheel coordinate systems, labeled with superscripts 2 and
3, (x*,y*,2°) for the right wheel and (x*,y*.z') for the left
wheel. These frames rotate with the wheels and are crucial
for understanding how the wheels' rotation affects the robot’s
balance and movement.
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